
Виртуальные машины
Лекция №02

Теория языков программирования

Проблема: сколько нужно бэкендов компилятору?

Интерпретатор CPython

Проектируем ВМ

Элементы RAM-машины (Random Access Machine)
1. Внутренняя память — конечный

набор регистров с целыми числами
2. Входная лента целых чисел
3. Выходная лента целых чисел
4. Программа — список инструкций
5. Указатель на текущую инструкцию
6. Набор инструкций

x1

Входная лента

x2 x3 …

Выходная лента

Программа r1

r2

r3

…

r0

Процесс проектирования
Цель — спроектировать ВМ для своего языка

1. Рисуем схему машины
2. Составляем набор инструкций

○ Учитываем все возможности языка
○ Оцениваем способ реализации

TigerVM

TigerVM

TigerVM

Архитектура проекта

Новые модули в проекте

Стратегия тестирования

1. Фокус на приёмочные тесты

2. Модульные тесты на обработку
инструкций VM

Тесты для ВМ

Модульный тест для VM

[Theory]
[MemberData(nameof(GetEvaluateExpressionData))]
public void Can_evaluate_expression(
 List<Instruction> instructions, Value expected
)
{
 FakeEnvironment environment = new();
 TigerVm vm = new(environment, instructions);
 Value result = vm.RunProgram();

 Assert.Equal(0, vm.ExitCode);
 Assert.Equal(expected, result);
 Assert.Empty(environment.BufferedOutput);
 Assert.Empty(environment.FlushedOutput);
}

Модульный тест для VM

// Возврат одного значения со стека
{
 [
 new Instruction(InstructionCode.Push, 67),
 new Instruction(InstructionCode.StoreResult),
 new Instruction(InstructionCode.Push, 0),
 new Instruction(InstructionCode.Halt),
],
 new Value(67)
},

Реализуем ВМ

Инструкции
public enum InstructionCode
{
 // Добавляет значение в стек
вычислений.
 Push,

 // Забирает значение из стека
вычислений, записывает его в новую
переменную с указанным именем.
 DefineVar,

 // ...
}

public class Instruction
{
 public Instruction(
 InstructionCode code, Value value
)
 {
 Code = code;
 Operand = value;
 }

 public InstructionCode Code { get; set; }

 public Value Operand { get; set; }
}

Главный цикл виртуальной машины
public Value RunProgram() {
 while (true) {
 Instruction instruction = _instructions[_instructionPointer++];
 switch (instruction.Code) {
 case InstructionCode.Push:
 _evaluationStack.Push(instruction.Operand);
 break;

 case InstructionCode.Halt:
 // Получаем код возврата программы.
 _exitCode = _evaluationStack.Pop().AsInt();
 return _result;

 default:
 throw new NotImplementedException(
 $"Unsupported instruction code: {instruction.Code}"
);
 }
 }
}

Ключевые идеи в реализации
1. Вычисления на стеке Stack<Value>
2. Словари переменных VariablesTable — стек хэш-массивов
3. Условные и безусловные переходы
4. Вызовы функций с помощью стека возвратов

Вычисления на стеке
[// (20 + 50) - 3 = 67

 new Instruction(InstructionCode.Push, 20),

 new Instruction(InstructionCode.Push, 50),

 new Instruction(InstructionCode.Add),

 new Instruction(InstructionCode.Push, 3),

 new Instruction(InstructionCode.Subtract),

 new Instruction(InstructionCode.StoreResult),

 new Instruction(InstructionCode.Push, 0),

 new Instruction(InstructionCode.Halt),

],

Вызов пользовательской функции
case InstructionCode.Call: {

 _returnStack.Push(new ReturnContext(_instructionPointer, _variables));

 _instructionPointer = instruction.Operand.AsInt();

 }

 break;

case InstructionCode.Return: {

 ReturnContext context = _returnStack.Pop();

 _instructionPointer = context.InstructionPointer;

 _variables = context.Variables;

 }

 break;

Приёмочные тесты
Interpreter.Specs

Приёмочные тесты

1. Два слоя тестов
○ Features — возможности языка
○ Programs — полноценные

программы

2. Тесты запускают весь интерпретатор

Пример приёмочного теста

#language: ru
Функциональность: ветвления

 Сценарий: ветвление if...then
 Пусть я загрузил программу "features/branching/if_then.tig"

 Когда я выполняю программу

 Тогда я увижу вывод:
 """
 2 * 2 = 4
 """

Пример приёмочного теста

#language: ru
Функциональность: ветвления

 Сценарий: ветвление if...then
 Пусть я загрузил программу "features/branching/if_then.tig"

 Когда я выполняю программу

 Тогда я увижу вывод:
 """
 2 * 2 = 4
 """

/* Ветвление с веткой
 then без else */
(
 if 2 * 2 = 4
 then
 print("2 * 2 = 4");
 if 2 * 2 = 5
 then
 print("2 * 2 = 5")
)

Как найти файл из теста в C#?

public static class Samples
{
 public static string GetSampleProgram(string filename)
 {
 // ...
 }

 private static string GetClassDirectory(
 [CallerFilePath] string path = ""
)
 {
 return Path.GetDirectoryName(path) ?? throw new ArgumentException(
 $"Could not get directory path from {path}"
);
 }
}

Как найти файл из теста в C#?

public static class Samples
{
 public static string GetSampleProgram(string filename)
 {
 // ...
 }

 private static string GetClassDirectory(
 [CallerFilePath] string path = ""
)
 {
 return Path.GetDirectoryName(path) ?? throw new ArgumentException(
 $"Could not get directory path from {path}"
);
 }
}

Конец

