
Промежуточный код
Лекция №3

Теория языков программирования

Оптимизации промежуточного кода

Сравнение

Виртуальная машина (VM)

● Компилятор создаёт байт-
код

● Виртуальная машина
исполняет байт-код
(интерпретация)

Промежуточный код (IR)

● Компилятор создаёт
промежуточный код

● Бэкенд компилирует IR в
машинный код
(компиляция)

Вопросы лекции
1. Как проектировать промежуточный код?
2. Как проектировать байт-код?

От исходного кода к AST

Площадь треугольника по формуле Герона
float triangleSquare(
 float a, float b, float c
) {
 float p = (a + b + c) / 2.0;
 return sqrtf(
 p * (p - a)
 * (p - b) * (p - c)
);
}

Площадь треугольника по формуле Герона
float triangleSquare(
 float a, float b, float c
) {
 float p = (a + b + c) / 2.0;
 return sqrtf(
 p * (p - a)
 * (p - b) * (p - c)
);
}

Площадь треугольника по формуле Герона
float triangleSquare(
 float a, float b, float c
) {
 float p = (a + b + c) / 2.0;
 return sqrtf(
 p * (p - a)
 * (p - b) * (p - c)
);
}

Трёхадресный код

Трёхадресный код
float t1 = a + b;
float t2 = t1 + c;
float p = t2 / 2.0;

Трёхадресный код
Одна инструкция содержит:
1. Один оператор
2. До двух операндов
3. Один результат

Трансляция в трёхадресный код

float t1 = a + b;
float t2 = t1 + c;
float p = t2 / 2.0;

Временные переменные генерируются компилятором

Трансляция в трёхадресный код
float t4 = p - a;
float t5 = p - b;
float t6 = p - c;

float t7 = p * t4;
float t8 = t7 * t5;
float t9 = t8 * t6;

float t10 = sqrt(t9);

Временные переменные генерируются компилятором

Структура трёхадресного кода — четвёрки
typedef union Operand {
 Name name;
 Constant constant;
} Operand;

typedef struct Instruction {
 OpCode operation;
 Operand left;
 Operand right;
 Name result;
} Instruction;

● OpCode — перечислимый тип

● Constant — значение литерала

● Name — имя

Компромиссы трёхадресного кода
Как представить вызов функции?

float triangleSquare(float a, float b, float c)

Неудачный вариант:

t := call a, b, c

Компромиссы трёхадресного кода
Как представить вызов функции?

float triangleSquare(float a, float b, float c)

Решение №1 — дополнительная инструкция:

param a

param b

param c

t := call

Компромиссы трёхадресного кода
Как представить вызов функции?

float triangleSquare(float a, float b, float c)

Решение №2 — отойти от строгих правил:

t := call(a, b, c)

Двухадресный код

Двухадресные команды
Вычисляем p = (a + b + c) * 0.5
movaps %xmm3, %xmm0 # xmm0 = a
addss %xmm4, %xmm0 # xmm0 = a + b
addss %xmm5, %xmm0 # xmm0 = a + b + c
movss .LC0(%rip), %xmm6 # xmm6 = 0.5
mulss %xmm6, %xmm0 # xmm0 = p

Двухадресные команды
Вычисляем p = (a + b + c) * 0.5
movaps %xmm3, %xmm0 # xmm0 = a
addss %xmm4, %xmm0 # xmm0 = a + b
addss %xmm5, %xmm0 # xmm0 = a + b + c
movss .LC0(%rip), %xmm6 # xmm6 = 0.5
mulss %xmm6, %xmm0 # xmm0 = p

Четвёрки: (opcode, operand, operand, result)
Тройки: (opcode, operand, operand)

Двухадресные команды
Вычисляем p = (a + b + c) * 0.5
movaps %xmm3, %xmm0 # xmm0 = a
addss %xmm4, %xmm0 # xmm0 = a + b
addss %xmm5, %xmm0 # xmm0 = a + b + c
movss .LC0(%rip), %xmm6 # xmm6 = 0.5
mulss %xmm6, %xmm0 # xmm0 = p

Четвёрки: (opcode, operand, operand, result)
Тройки: (opcode, operand, operand)

Вопрос №1: а где будет результат операции?

Двухадресные команды
Вычисляем p = (a + b + c) * 0.5
movaps %xmm3, %xmm0 # xmm0 = a
addss %xmm4, %xmm0 # xmm0 = a + b
addss %xmm5, %xmm0 # xmm0 = a + b + c
movss .LC0(%rip), %xmm6 # xmm6 = 0.5
mulss %xmm6, %xmm0 # xmm0 = p

Четвёрки: (opcode, operand, operand, result)
Тройки: (opcode, operand, operand)

Вопрос №2: почему современные
ассемблеры — двухадресные?

Байт-код стековой машины

Байт-код с одним операндом
public class Instruction {

 public Instruction(InstructionCode code, Value value) {

 Code = code;

 Operand = value;

 }

 public InstructionCode Code { get; }

 public Value Operand { get; }

}

Вопрос: куда исчезли остальные операнды и результат?

TigerVM

Категории инструкций в байт-коде

1. Операции со стеком
2. Доступ к переменными
3. Бинарные и унарные операции

○ арифметические
○ сравнения
○ логические

4. Безусловный переход
5. Условные переходы
6. Вызовы функций и возврат

7. Доступ к элементам массива
8. Доступ к полям структуры
9. Управление областями

видимости

Примеры инструкций

Операции со стеком:

1. Push <operand>
2. Pop
3. Duplicate

Доступ к переменным:

1. DefineVar (или Alloca)
2. StoreVar
3. LoadVar

Примеры инструкций

Арифметические операции:

1. Add
2. Subtract
3. Multiply
4. Divide
5. Modulo
6. Power
7. Sqrt
8. Negate

Логические операции:

1. And
2. Or
3. Xor
4. Not

Примеры инструкций

Операции сравнения:

1. Less
2. LessOrEqual
3. NotEqual
4. Equal

Безусловный переход:

1. Jump <адрес>

Условные переходы:

2. JumpIfTrue <адрес>
3. JumpIfFalse <адрес>

Примеры инструкций

Поддержка функций:

1. CallBuiltin <имя>
2. Call <адрес>
3. Return

Поддержка областей
видимости:

4. PushVars <число>
5. PopVars

Управление программой:

1. StoreResult
2. Halt

Поддержка составных типов
Поддержка массивов:

1. CreateArray — intArray[numsCount] of 7
2. LoadArray — printi(nums[i])
3. StoreArray — nums[0] := 2;

Поддержка структур:

4. InitField — Point{x = 10, y = 20}
5. LoadField — printi(p.x);
6. StoreField — points[0].x := 1;

Выбор таких инструкций сильно зависит от целевого языка

Инструкции перехода

Инструкции перехода

0. LoadVar, "x"
1. JumpIfTrue, 5
2. Push, "False branch"
3. CallBuiltin, "print"
4. Jump, 7
5. Push, "True branch"
6. CallBuiltin, "print"
7. Halt

if x then
 print("True branch")
else
 print("False branch")

Инструкции перехода

0. LoadVar, "x"
1. JumpIfTrue, 5
2. Push, "False branch"
3. CallBuiltin, "print"
4. Jump, 7
5. Push, "True branch"
6. CallBuiltin, "print"
7. Halt

if x then
 print("True branch")
else
 print("False branch")

Допустим, x=0

Инструкции перехода

0. LoadVar, "x"
1. JumpIfTrue, 5
2. Push, "False branch"
3. CallBuiltin, "print"
4. Jump, 7
5. Push, "True branch"
6. CallBuiltin, "print"
7. Halt

if x then
 print("True branch")
else
 print("False branch")

Допустим, x=1

Реализация переходов через метки (labels)

0. LoadVar, "x"
1. JumpIfTrue, thenBranch
2. Push, "False branch"
3. CallBuiltin, "print"
4. Jump, endIf

5. Push, "True branch"
6. CallBuiltin, "print"

7. Halt

if x then
 print("True branch")
else
 print("False branch")

thenBranch:

endIf:

Абстракция «базовый блок» — именованные блоки

0. Halt

thenBranch:

endIf:

0. LoadVar, "x"
1. JumpIfTrue, thenBranch
2. Push, "False branch"
3. CallBuiltin, "print"
4. Jump, endIf

0. Push, "True branch"
1. CallBuiltin, "print"

start:

Абстракция «базовый блок» — нумерованные блоки

0. Halt

блок №1

блок №2

0. LoadVar, "x"
1. JumpIfTrue, 1
2. Push, "False branch"
3. CallBuiltin, "print"
4. Jump, 2

0. Push, "True branch"
1. CallBuiltin, "print"

блок №0

Класс BasicBlock
public class BasicBlock(int id) {

 public int Id { get; } = id;

 public List<Instruction> Instructions { get; } = [];

 public void Append(Instruction instruction) {

 Instructions.Add(instruction);

 }

}

Класс InstructionsBuilder
public class InstructionsBuilder

{

 BasicBlock InsertPoint { get; set; }

 BasicBlock CreateBasicBlock();

 void Append(Instruction instruction);

 void AppendJump(OpCode code, BasicBlock target);

 List<Instruction> Finish();

}

Применение InstructionsBuilder
// Конструкция if ... then выполняется так:

// 1) Вычисляется условие

// 2) Если результат равен нулю, то перепрыгиваем через ветку then

BasicBlock finalBlock = _builder.CreateBasicBlock();

e.Condition.Accept(this);

_builder.AppendJump(InstructionCode.JumpIfFalse, finalBlock);

e.ThenBranch.Accept(this);

_builder.AppendJump(InstructionCode.Jump, finalBlock);

_builder.InsertPoint = finalBlock;

🟢 Зелёная дорожка

Этапы проекта «интерпретатор со своей VM»
1. Базовый уровень (3+)

○ Ввод-вывод
○ Выражения с операциями над числами и строками
○ Переменные

2. Контроль потока управления (4+)
○

Пример для проекта «интерпретатор со своей VM»
Основной пример: https://sourcecraft.dev/sshambir-public/pstiger

Ветки:

https://sourcecraft.dev/sshambir-public/pstiger

Конец

