Лекция №4

Теории Андрея Маркова (младшего)

- 1. Нормальный алгоритм Маркова
- 2. Цепи Маркова
 - о статистический подход к обработке языков
 - о ключевая парадигма в NLP *

* NLP — Natural Language Processing

(обработка естественных языков)

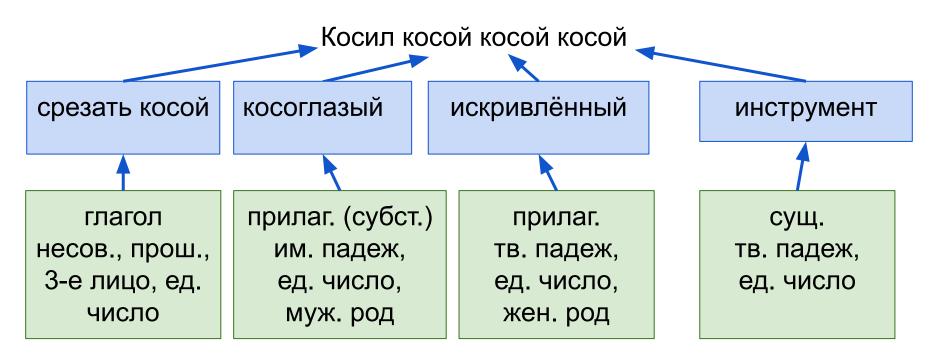
Нормальный алгоритм Маркова

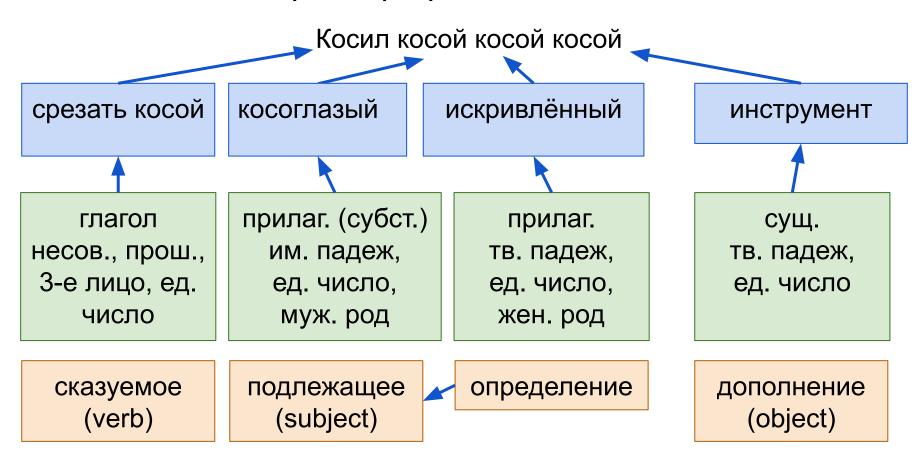
Абстрактная машина:

- 1. Обрабатывает цепочки символов
- 2. Имеет набор правил преобразования
 - \circ AB \rightarrow Ade
 - \circ C \rightarrow ff
- 3. Алгоритм это конечный ряд подстановок

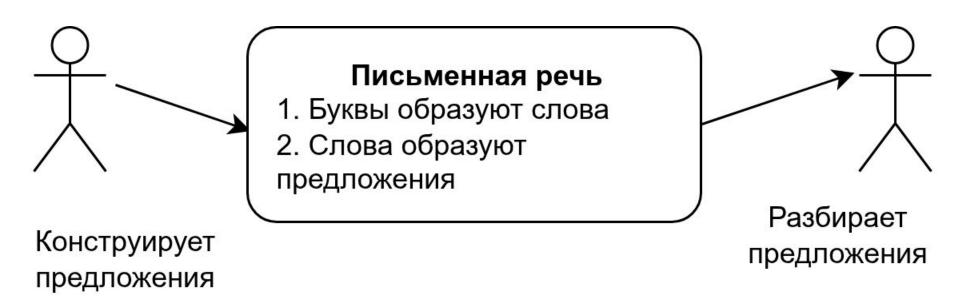
Эквивалент: машина Тьюринга.

- Представлены в 1957 году на примере английского языка
 - Книга "Syntactic Structures", Avram Noam Chomsky


- Представлены в 1957 году на примере английского языка
 - Книга "Syntactic Structures", Avram Noam Chomsky
- Изначально разработаны для естественных языков
 - Генеративная лингвистика (1960—1990-е годы)


- Представлены в 1957 году на примере английского языка
 - Книга "Syntactic Structures", Avram Noam Chomsky
- Изначально разработаны для естественных языков
 - Генеративная лингвистика (1960—1990-е годы)
- Стали фундаментом формальных языки

Конструирование и разбор


Косил косой косой косой

Конструирование и разбор

Простая грамматика

предложение = субъект, действие [, объект] ;

Простая грамматика

```
предложение = субъект, действие [, объект ] ;

субъект = СУЩ. | МЕСТ.;

действие = ГЛАГОЛ ;

объект = ПРИЛ., СУЩ. ;
```

Терминалы и нетерминалы

```
предложение = субъект, действие [, объект ];

субъект = СУЩ. | МЕСТ.;

действие = ГЛАГОЛ ;

объект = ПРИЛ., СУЩ. ;
```

Терминалы (терминальные символы)	СУЩ., МЕСТ., ГЛАГОЛ, ПРИЛ.
Нетерминалы	предложение, субъект, действие,
(нетерминальные символы)	объект

```
предложение = субъект, действие [, объект ] ;

субъект = СУЩ. | МЕСТ.;

действие = ГЛАГОЛ ;

объект = ПРИЛ., СУЩ. ;
```

предложение

```
1-й пример конструирования
предложение = субъект, действие [, объект ];
субъект = СУЩ. | МЕСТ.;
действие = ГЛАГОЛ;
объект = ПРИЛ., СУЩ.;
```

субъект, действие

предложение

```
предложение = субъект, действие [, объект ] ;
субъект = СУЩ. | MECT.;
действие = ГЛАГОЛ ;
объект = ПРИЛ., СУЩ.;
                                      МЕСТ., ГЛАГОЛ
                субъект, действие
предложение
                                        Он бежит
```

```
предложение = субъект, действие [, объект ] ;

субъект = СУЩ. | МЕСТ.;

действие = ГЛАГОЛ ;

объект = ПРИЛ., СУЩ. ;
```

предложение

```
предложение = субъект, действие [, объект ] ; субъект = СУЩ. | МЕСТ.; действие = ГЛАГОЛ ; объект = ПРИЛ., СУЩ. ; субъект, действие,
```

объект

```
предложение = субъект, действие [, объект ] ;
субъект = СУЩ. | MECT.;
действие = ГЛАГОЛ ;
объект = ПРИЛ., СУЩ.;
                 субъект, действие,
                                      СУЩ., ГЛАГОЛ, ПРИЛ., СУЩ.
предложение
                      объект
                                        Мальчик ест вкусный суп
```

```
предложение = субъект, действие [, объект ] ;
cyбъект = CУЩ. | MECT.;
действие = ГЛАГОЛ ;
объект = ПРИЛ., СУЩ.;
                 субъект, действие,
                                       СУЩ., ГЛАГОЛ, ПРИЛ., СУЩ.
предложение
                      объект
      Порождающие грамматики не
                                         Мальчик ест вкусный суп
         учитывают семантику
             (смысл слов)
```

```
предложение = субъект, действие [, объект ] ;
cyбъект = CУЩ. | MECT.;
действие = ГЛАГОЛ ;
объект = ПРИЛ., СУЩ.;
                  субъект, действие,
                                        СУЩ., ГЛАГОЛ, ПРИЛ., СУЩ.
предложение
                      объект
      Порождающие грамматики не
                                         Мальчик ест вкусный суп
         учитывают семантику
             (смысл слов)
                                         Ящик ест стеклянный суп
```

Переход к абстракциям

```
предложение = субъект, действие [, объект ] ; субъект = СУЩ. | МЕСТ.; действие = ГЛАГОЛ ; объект = ПРИЛ., СУЩ. ;
```

Переход к абстракциям

```
предложение = субъект, действие [, объект ] ;
субъект = СУЩ. | МЕСТ.;
действие = ГЛАГОЛ ;
объект = ПРИЛ., СУЩ. ;
```

```
sentence = subject, action, object;
subject = noun | pronoun;
action = verb;
object = adjective, noun | ε;
```

Переход к абстракциям

```
предложение = субъект, действие [, объект ] ;

субъект = СУЩ. | МЕСТ.;

действие = ГЛАГОЛ ;

объект = ПРИЛ., СУЩ. ;
```

```
sentence = subject, action, object;
subject = noun | pronoun;
action = verb;
object = adjective, noun | ε;
```

$$A \rightarrow BCD$$
 $B \rightarrow a$
 $B \rightarrow b$
 $C \rightarrow c$
 $D \rightarrow da$
 $D \rightarrow \epsilon$

Регулярные грамматики

Виды регулярных грамматик

Левая регулярная грамматика

Допустимы 3 вида правил:

- 1. $A \rightarrow a$
- 2. $A \rightarrow aB$
- 3. $A \rightarrow \epsilon$

Правая регулярная грамматика

Допустимы 3 вида правил:

- 1. $A \rightarrow a$
- 2. $A \rightarrow Ba$
- 3. $A \rightarrow \epsilon$

^{*} А и В могут совпадать

Виды регулярных грамматик

Левая регулярная грамматика

Допустимы 3 вида правил:

- 1. $A \rightarrow a$
- 2. $A \rightarrow aB$
- 3. $A \rightarrow \epsilon$

* А и В могут совпадать

Правая регулярная грамматика

Допустимы 3 вида правил:

- 1. $A \rightarrow a$
- 2. $A \rightarrow Ba$
- 3. $A \rightarrow \epsilon$

Вопрос: как выразить правило А → aaaB в регулярной грамматике?

Вопрос: это регулярная грамматика? предложение = субъект, действие [, объект] ; субъект = СУЩ. | МЕСТ.; действие = ГЛАГОЛ ; объект = ПРИЛ., СУЩ.; $A \rightarrow BCD$

$$A \rightarrow BCD$$
 $B \rightarrow a$
 $B \rightarrow b$
 $C \rightarrow c$
 $D \rightarrow da$
 $D \rightarrow \epsilon$

Правила:

Входные строки:

Соответствие грамматике:

 $A \rightarrow a$

ba

1. ???

 $A \rightarrow b$

2. ab

2. ???

 $A \rightarrow bA$

3. bbba

3. ???

Правила:

Входные строки:

Соответствие грамматике:

 $A \rightarrow a$

1. ba

1. Соответствует

 $A \rightarrow b$

2. ab

2. ???

 $A \rightarrow bA$

3. bbba

3. ???

 $A \rightarrow bA \rightarrow ba$ $A \rightarrow bA \rightarrow a$

Правила:

Входные строки:

Соответствие грамматике:

 $A \rightarrow a$

1. ba

1. Соответствует

 $A \rightarrow b$

2. ab

2. Не соответствует

 $A \rightarrow bA$

3. bbba

3. ???

Правила:

Входные строки:

Соответствие грамматике:

 $A \rightarrow a$

1. ba

1. Соответствует

 $A \rightarrow b$

2. ab

2. Не соответствует

 $A \rightarrow bA$

3. bbba

3. Соответствует

$$A \rightarrow bA \rightarrow bbA \rightarrow bbbA \rightarrow bbba$$
 $A \rightarrow bA \qquad A \rightarrow bA \qquad A \rightarrow a$

Преимущества регулярных грамматик

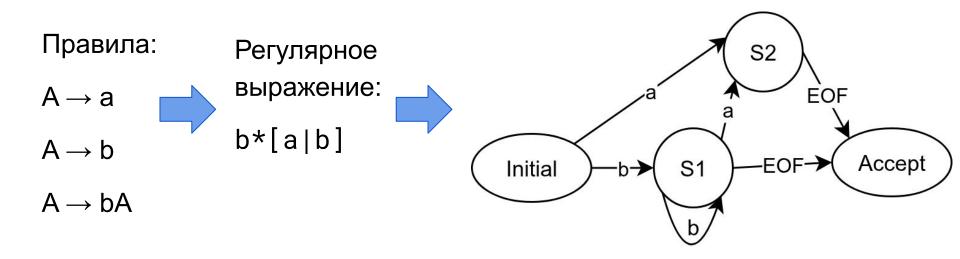
Правила:

 $A \rightarrow a$

 $A \to b \,$

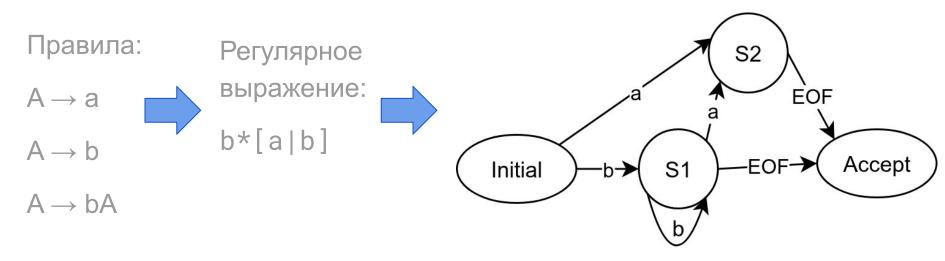
 $A \to b A$

Преимущества регулярных грамматик


1. Эквивалентны регулярным выражениям

Правила: Регулярное $A \to a$ выражение: b*[a|b]

 $A \rightarrow bA$


Преимущества регулярных грамматик

- 1. Эквивалентны регулярным выражениям
- 2. Эквивалентны конечному автомату

Преимущества регулярных грамматик

- 1. Эквивалентны регулярным выражениям
- 2. Эквивалентны конечному автомату
 - Следовательно, могут быть разобраны за один проход без предпросмотра (ДКА) или с предпросмотром (НКА)
 - Идеальны для лексического анализа

Ограничения регулярных грамматик

Не могут выражать иерархические правила:

- Сбалансированные скобки: (), (()), ((())), ...
- 2. Закрывающие/открывающие теги: <div></div>
- 3. Операторы с приоритетами: 17 + a * b / 2
- 4. Выражения со скобками: (17 + a) * b / 2

Конечный автомат не «запоминает» пройденную часть иерархии

Контекстно-свободные грамматики

(КС-грамматики)

Контекстно-свободная грамматика

Состоит из правил вида

$$A \rightarrow \alpha$$

Где:

- A нетерминал
- α конечная цепочка терминалов и нетерминалов
 - может быть пустой

Грамматика сбалансированных скобок

EBNF:

```
expr = "(", expr, ")" ;
expr = ;
```

Формула:

 $A \rightarrow aAb$

 $A \rightarrow \epsilon$

Грамматика арифметических выражений

EBNF с левой рекурсией:

```
expr = expr, [("+" | "-"), term];
term = term, [("*" | "/"), factor];
factor = identifier | number
```

Грамматика арифметических выражений со скобками

EBNF с левой рекурсией:

```
expr = expr, [("+" | "-"), term];
term = term, [("*" | "/"), factor];
factor = "(", expr, ")" | identifier | number
```

Преимущества КС грамматик

- 1. Могут выражать рекурсивные правила
 - Подходят для разбора формальных языков

Преимущества КС грамматик

- 1. Могут выражать рекурсивные правила
 - Подходят для разбора формальных языков
- 2. Могут быть разобраны с помощью рекурсии или стека
 - Автомат с магазинной памятью

Контекстно-зависимые грамматики

Контекстно-зависимая грамматика

Состоит из правил вида

$$\alpha A\beta \rightarrow \alpha \omega \beta$$

Где:

- A нетерминал
- ω конечная непустая цепочка терминалов и нетерминалов
- α, β конечные цепочки терминалов и нетерминалов
 - могут быть пустыми

Язык anbncn

Допустимые предложения: abc, aabbcc, aaabbbccc, ...

Грамматика:

 $S \rightarrow a B C$ $b B \rightarrow b b$

 $S \rightarrow a S B C$ **b C** \rightarrow **b c**

 $C B \rightarrow B C$ $C \rightarrow C C$

 $a B \rightarrow a b$

Иерархия грамматик

Иерархия порождающих грамматик Хомского

- Тип 0 неограниченные
- Тип 1 контекстно-зависимые (неукорачивающие)
- Тип 2 контекстно-свободные
- Тип 3 регулярные

Иерархия порождающих грамматик Хомского

Тип	Способ вычисления	Применение в компиляторах
Неограниченные	Нормальный алгоритм Маркова (Машина Тьюринга)	
Контекстно- зависимые	Линейно ограниченный автомат	
Контекстно- свободные	Автомат со стеком	Синтаксический разбор
Регулярные	Конечный автомат	Лексический разбор

Ссылки

- 1. <u>Простым языком о языковых моделях и цепи Маркова (Markov</u> <u>Chain)</u>
- 2. Лемма о разрастании (лемма о накачке)

Конец! Вопросы?