
Абстрактное
синтаксическое дерево

Лекция №8



Пример PsKaleidoscope

Пример к лекции:

● https://sourcecraft.dev/sshambir-public/pskaleidoscope

https://sourcecraft.dev/sshambir-public/pskaleidoscope


Задача
Сейчас в PsKaleidoscope реализованы:

1. Разбор выражений
2. Разбор программы
3. Константы  и переменные
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Задача
Сейчас в PsKaleidoscope реализованы:

1. Разбор выражений
2. Разбор программы
3. Константы  и переменные

Нужны:

1. Ветвления
2. Циклы
3. Функции

Построчное выполнение
потребует повторного разбора

Построчный разбор,
немедленное выполнение



Проблемы / решения

Проблема Решение

Циклы и функции требуют 
повторного выполнения

???



Abstract Syntax Tree



Дерево разбора (Parse Tree)
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SELECT expression_list

expression expressionCOMMA

NUMBERNUMBER NUMBER PLUS

● N-арное дерево
● Содержит 

терминалы и 
нетерминалы



Дерево разбора (Parse Tree)

select_query

SELECT expression_list

expression expressionCOMMA

NUMBERNUMBER NUMBER PLUS

● N-арное дерево
● Содержит 

терминалы и 
нетерминалы

Проблемы дерева разбора:

1. Избыточная информация

○ Ключевые слова и другие лексемы

○ Не влияет на выполнение

2. Разные варианты одного правила



List<Expr>

Абстрактное синтаксическое дерево (AST)

SelectQuery

LiteralExpr

LiteralExprLiteralExpr

● N-арное дерево
● Содержит  

логические узлы
● Все узлы — 

подклассы одной 
иерархии BinaryOpExpr



AST языка Kaleidoscope



Абстрактные классы

● AstNode — надкласс всех узлов AST
● Declaration — надкласс объявлений
● Expression — надкласс выражений



Подклассы объявлений



Подклассы выражений



Свойства подклассов выражений



Изменения в парсере

case TokenType.Identifier:

   string name = Match(TokenType.Identifier)

       .Value!.ToString();

   return new VariableExpression(name);

Заменяем прямые вычисления на создание узлов AST



Обработка AST



Диспетчеризация
1. Диспетчеризация — действие выбирается в зависимости от 

подтипа объекта
○ Вызываем метод Expression.Evaluate()
○ → вызывается метод BinaryOperationExpr.Evaluate()



Диспетчеризация
1. Диспетчеризация — действие выбирается в зависимости от 

подтипа объекта
2. Двойная диспетчеризация — действие выбирается в зависимости 

от подтипа объекта и аргумента
○ Шаблон «Посетитель» (Visitor)
○ Сопоставление (Pattern Matching) по подтипам



Сопоставление по типу (Pattern Matching by type)
return _value switch

{

   string s => s,

   double d => d.ToString(CultureInfo.InvariantCulture),

   _ => throw new NotImplementedException(),

};



Шаблон «Посетитель» (Visitor)



Шаблон «Посетитель» (Visitor)



Вычисление выражений по AST



Вычисление выражения по AST
1. Создаём стек
2. Обходим дерево
3. Возвращаем единственное оставшееся значение в стеке

public double Evaluate(AstNode node)
{
   node.Accept(this);
   // TODO: бросить исключение, если в стеке не 1 значение
   return _values.Pop();
}



Литерал
public void Visit(LiteralExpression e)
{
   _values.Push(e.Value);
}



Чтение переменной или константы
public void Visit(VariableExpression e)
{
   _values.Push(_context.GetValue(e.Name));
}



Изменение значения переменной
public void Visit(AssignmentExpression e)
{
   // NOTE: Вычисляем выражение, и затем присваиваем
   // его значение переменной, сохраняя результат в стеке.
   e.Value.Accept(this);
   double value = _values.Peek();
   _context.AssignVariable(e.Name, value);
}



Унарная операция
public void Visit(UnaryOperationExpression e) {
   e.Operand.Accept(this);
   switch (e.Operation) {
       case UnaryOperation.Minus:
           _values.Push(-_values.Pop());
           break;
       case UnaryOperation.Plus:
           break;
       default:
           throw new NotImplementedException(...);
   }
}



Бинарная операция
public void Visit(BinaryOperationExpression e) {
   e.Left.Accept(this);
   e.Right.Accept(this);
   double right = _values.Pop()
   double left = _values.Pop();
   switch (e.Operation) {
       case BinaryOperation.Plus:
           _values.Push(left + right);
           break;
       // ...
       default:
           throw new NotImplementedException(...);
   }
}
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Модульные тесты



Каноничный TDD



Цели модульного тестирования
1. Защита от регрессий
2. Тесты как документация модуля
3. Уверенность в каждом модуле
4. Тесты как способ проектирования — см. Canon TDD

https://tidyfirst.substack.com/p/canon-tdd
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Цели модульного тестирования
1. Защита от регрессий
2. Тесты как документация модуля
3. Уверенность в каждом модуле
4. Тесты как способ проектирования — см. Canon TDD

Ответ: цели упорядочены по возрастанию важности

Вопрос: какая цель важнее всего?

https://tidyfirst.substack.com/p/canon-tdd


Разработка системы по TDD

Стиль ООП
Программа — это набор 
взаимодействующих 
объектов



Разработка системы по TDD
1. Делим программу на модули
2. Каждый модуль пишем по TDD
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Разработка системы по TDD
1. Делим программу на модули
2. Каждый модуль пишем по TDD

Стиль ООП
Программа — это набор 
взаимодействующих 
объектов

1. UML Class
2. UML Sequence



Практики eXtreme Programming



Практики eXtreme Programming — два круга из трёх



Петли обратной связи в Agile (feedback loops)



Практики eXtreme Programming — третий круг



Приёмочные тесты



Функциональное тестирование
Принципы Structural Testing (1970-е):

● Тестирование чёрного ящика

○ Тестируют наблюдаемое извне поведение

○ Пример: ввод/вывод консольной программы

○ Это функциональные тесты 

● Тестирование прозрачного (белого) ящика

○ Тестируют внутренние интерфейсы программы



Три названия, но суть одна:

● Functional Tests — из Structural Testing, 1970-е
● Customer Tests — из eXtreme Programming, 1998
● Acceptance Tests — из Agile, 2000-е

Приёмочные тесты
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Проблема Решение
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(Abstract Syntax Tree)
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???



Язык Gherkin



Язык Gherkin
1. Почти естественный язык описания тестов
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2. Реализует принцип Specification by Example



Язык Gherkin
1. Почти естественный язык описания тестов

2. Реализует принцип Specification by Example

3. Транслируется в вызовы функций при запуске тестов

○ Reqnroll (C#) — компилирует Gherkin в C#

○ cucumber/godog (Go) — интерпретирует Gherkin, все шаги на Go

○ cucumber/js — интерпретирует Gherkin, все шаги на JS / TS



Пример тестов на Gherkin
Функциональность: Последовательное выполнение

   Сценарий: вычисление площади круга

       Когда я выполняю программу:

       """

       ... код …

       """

       Тогда я получаю результаты:

         | Value    |

         | 3.14159  |



Поддержка Gherkin в Reqnroll (C#)



Проблемы / решения

Проблема Решение

Циклы и функции требуют 
повторного выполнения

Внедряем AST
(Abstract Syntax Tree)

Рефакторинг может сломать 
программу

Внедряем приёмочные тесты
(функциональные тесты)

Как отделить тесты от 
реализации?

Используем Gherkin и 
Cucumber  / Reqnroll



Трёхэтапный процесс рефакторинга
1. Покрываем код приёмочными тестами

○ Они устойчивы к изменению архитектуры

2. ???

3. ???
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Трёхэтапный процесс рефакторинга
1. Покрываем код приёмочными тестами

○ Они устойчивы к изменению архитектуры

2. Проводим рефакторинг

○ Добавляем AST

3. Реализуем новую функциональность

○ Ветвления, циклы, функции



Спасибо за внимание!
Вопросы?


