
Поток выполнения
Лекция №9

Управление потоком выполнения
Структурное программирование:

1. Отказ от goto
2. Ветвления
3. Циклы

Управление потоком выполнения
Структурное программирование:

1. Отказ от goto
2. Ветвления
3. Циклы

Процедурное программирование:

1. Функции (процедуры)
2. Структуры (записи)

Управление потоком выполнения
Структурное программирование:

1. Отказ от goto
2. Ветвления
3. Циклы

Процедурное программирование:

1. Функции (процедуры)
2. Структуры (записи)

Ветвления, циклы и вызовы
функций меняют поток

выполнения

Проблема

Проблема Решение

Как понять, что функции,
циклы и ветвления
реализованы верно?

???

Проблема

Проблема Решение

Как понять, что функции,
циклы и ветвления
реализованы верно?

???

Может быть, применить
«Список тестов» и TDD?

Проблема

Модульных тестов недостаточно,
чтобы проверить всю программу

Истории в Agile

Проблема

Проблема Решение

Как понять, что функции,
циклы и ветвления
реализованы верно?

???

Проблема Решение

Как понять, что функции,
циклы и ветвления
реализованы верно?

Написать
1. Пользовательскую историю
2. Критерии приёмки

Проблема

Шаблон пользовательской истории (User Story)
Как {роль}, я хочу {функция программы}, чтобы {решаемая задача}

История №1
Как разработчик, я хочу иметь ветвления и рекурсию, чтобы ???

Шаблон:

Как {роль}, я хочу {функция программы}, чтобы {решаемая задача}

История №1
Как разработчик, я хочу иметь ветвления и рекурсию, чтобы считать
числа Фибоначчи

Шаблон:

Как {роль}, я хочу {функция программы}, чтобы {решаемая задача}

История №1
Как разработчик, я хочу иметь ветвления и рекурсию, чтобы считать
числа Фибоначчи

Критерии приёмки:

1. Есть if…then..else
2. Можно объявить и вызвать функцию
3. Есть поддержка рекурсии

История №1
Как разработчик, я хочу иметь ветвления и рекурсию, чтобы считать
числа Фибоначчи

Критерии приёмки:

1. Есть if…then..else
2. Можно объявить и вызвать функцию
3. Есть поддержка рекурсии

История №1
Как разработчик, я хочу иметь ветвления и рекурсию, чтобы считать
числа Фибоначчи

Критерии приёмки:

1. Рекурсивное вычисление N-го числа Фибоначчи работает

Числа Фибоначчи — рекурсивная версия

def fib(n)
 if n < 1 then
 0
 else if n < 3 then
 1
 else
 fib(n-1) + fib(n-2);

Числа Фибоначчи — рекурсивная версия

def fib(n)
 if n < 1 then
 0
 else if n < 3 then
 1
 else
 fib(n-1) + fib(n-2);

Числа Фибоначчи — рекурсивная версия

def fib(n)
 if n < 1 then
 0
 else if n < 3 then
 1
 else
 fib(n-1) + fib(n-2);

Какова
вычислительная

сложность?

Числа Фибоначчи — итеративная версия

def fib(n)
 # ... if n < 3
 else var a = 1, b = 1, c in (
 for i = 2, i < n in
 c = a + b :
 a = b :
 b = c
) : b;

Числа Фибоначчи — итеративная версия

def fib(n)
 # ... if n < 3
 else var a = 1, b = 1, c in (
 for i = 2, i < n in
 c = a + b :
 a = b :
 b = c
) : b;

Какова
вычислительная

сложность?

Улучшаем историю
Как разработчик, я хочу иметь ветвления, рекурсию и циклы, чтобы
считать числа Фибоначчи

Критерии приёмки:

1. Рекурсивное вычисление N-го числа Фибоначчи работает
2. Итеративное вычисление N-го числа Фибоначчи работает

Улучшаем историю
Как разработчик, я хочу иметь ветвления, рекурсию и циклы, чтобы
считать числа Фибоначчи

Критерии приёмки:

1. Рекурсивное вычисление N-го числа Фибоначчи работает
2. Итеративное вычисление N-го числа Фибоначчи работает

Можно разделить на 2 истории

Подход ATDD

Проблема Решение

Как понять, что функции,
циклы и ветвления
реализованы верно?

Написать
1. Пользовательскую историю
2. Критерии приёмки

Как понять, что критерии
приёмки пройдены?

???

Проблема

Проблема Решение

Как понять, что функции,
циклы и ветвления
реализованы верно?

Написать
1. Пользовательскую историю
2. Критерии приёмки

Как понять, что критерии
приёмки пройдены?

Написать приёмочный тест

Проблема

TDD — Test Driven Development

ATDD — Acceptance Test Driven Development

ATDD — Acceptance Test Driven Development

Один день по ATDD:

9:30 — пишем приёмочный тест

10:00 — рефакторим архитектуру

14:00 — реализуем изменения

17:00 — тест пройден,

 закрываем задачу

ATDD — Acceptance Test Driven Development

Один день по ATDD:

9:30 — пишем приёмочный тест

10:00 — рефакторим архитектуру

14:00 — реализуем изменения

17:00 — тест пройден,

 закрываем задачу

Ветвления и циклы

Грамматика выражений
primary_expression = number

 | identifier

 | identifier, arguments_list,

 | if_else_expression

 | for_loop_expression

 | variable_definition_scope

 | "(", expression, ")" ;

Выражения
if … then … else
for … in

Выражения if…then…else
if_else_expression =

 "if", expression,

 "then", expression,

 "else", expression ;

Выражения if…then…else
if_else_expression =

 "if", expression,

 "then", expression,

 "else", expression ;

Проблема «висячего else»:

if ... then
 if then ...
else ...

- К какому if относится else?
- Возникает ли проблема в

Kaleidoscope?

Разбор if…then…else
private Expression ParseIfElseExpression() {

 Match(TokenType.If);

 Expr c = ParseExpression();

 Match(TokenType.Then);

 Expr t = ParseExpression();

 Match(TokenType.Else);

 Expr e = ParseExpression();

 return new IfElseExpr(c, t, e);

}

Выражения for…in
for_loop_expression =

 "for", identifier, "=", expression,

 ",", expression,

 [",", expression],

 "in", expression ;

Выражения for…in
for_loop_expression =

 "for", identifier, "=", expression,

 ",", expression,

 [",", expression],

 "in", expression ;

Переменная-итератор

Выражения for…in
for_loop_expression =

 "for", identifier, "=", expression,

 ",", expression,

 [",", expression],

 "in", expression ;

Начальное значение

Выражения for…in
for_loop_expression =

 "for", identifier, "=", expression,

 ",", expression,

 [",", expression],

 "in", expression ;

Конечное значение
(включительное)

Выражения for…in
for_loop_expression =

 "for", identifier, "=", expression,

 ",", expression,

 [",", expression],

 "in", expression ;

Шаг итерации
(необязательный)

Выражения for…in
for_loop_expression =

 "for", identifier, "=", expression,

 ",", expression,

 [",", expression],

 "in", expression ;

Тело цикла

Изменения в AST

Условное выполнение
public void Visit(IfElseExpression e) {

 e.Condition.Accept(this);

 double value = _values.Pop();

 if (!Numbers.AreEqual(0.0, value)) {

 e.ThenBranch.Accept(this);

 } else {

 e.ElseBranch.Accept(this);

 }

}

Аналитикам на подумать
1. if-then-else — выражение или инструкция?

○ проблема висячего else
2. switch — есть или нет?

○ проблема пропущенного break — fallthrough
3. циклы — выражение или инструкция?

○ формы циклов — while, do…while, for, foreach
○ инструкции break / continue

Пользовательские
функции

Грамматика выражений
primary_expression = number

 | identifier

 | identifier, arguments_list,

 | if_else_expression

 | for_loop_expression

 | variable_definition_scope

 | "(", expression, ")" ;

Вызов функции

Грамматика программы
top_level_statement = (

 function_or_constant_definition

 | expression

), [";"] ;

function_or_constant_definition = "def", identifier

 [, "(", parameter_list, ")"], expression ;

Определение функции
или константы

Изменения в AST

Разбор определения
private AstNode ParseFunctionConstantDefinition() {

 Match(TokenType.Def);

 string name = Match(TokenType.Ident).Value!.ToString();

 if (_tokens.Peek().Type == TokenType.OpenParenthesis) {

 return new FunctionDecl(

 name, ParseParameterList(), ParseExpr()

);

 } else {

 return new ConstantDecl(name, ParseExpr());

 }

}

Вычисление определения функции
public void Visit(FunctionDeclaration d) {

 _context.DefineFunction(d);

 // NOTE: Результат «вычисления» — число 0.0.

 _values.Push(0.0);

}

Аналитикам на подумать
1. Есть ли функции без параметров?
2. Пересекаются ли имена функций и переменных?
3. Инструкция return
4. Рекурсия
5. Взаимная рекурсия
6. Порядок вычислений аргуменов

Подытожим

Проблемы / решения из прошлой лекции

Проблема Решение

Циклы и функции требуют
повторного выполнения

Внедряем AST
(Abstract Syntax Tree)

Рефакторинг может сломать
программу

Внедряем приёмочные тесты
(функциональные тесты)

Как отделить тесты от
реализации?

Используем Gherkin и
Cucumber / Reqnroll

Проблема Решение

Как понять, что функции,
циклы и ветвления
реализованы верно?

Написать
1. Пользовательскую историю
2. Критерии приёмки

Как понять, что критерии
приёмки пройдены?

Написать приёмочный тест

Проблемы / решения из этой лекции

Спасибо за внимание!
Вопросы?

