
Типы данных
Лекция №10

Цель лекции
Познакомиться с системой типов:

1. В учебном языке Tiger
2. В промышленных языках: C#, C++, Go, JavaScript, …

Синтаксис и семантика языков программирования

Синтаксис

Способ разбора лексем в
«предложения» языка

1. Правила КС-грамматики
2. Приоритет и ассоциативность

операторов

Семантика

???

Синтаксис и семантика языков программирования

Синтаксис

Способ разбора лексем в
«предложения» языка

1. Правила КС-грамматики
2. Приоритет и ассоциативность

операторов

Семантика

Смысл и поведение языковых
конструкций.

1. Правила работы с типами данных
2. Способ отображения имён на узлы

AST
○ англ. name resolution / symbol

linking
3. Контекстно-зависимые правила

○ Запрет break и continue вне
циклов

Язык Tiger

Язык Tiger
● Учебный язык программирования
● Разработан Andrew Appel для книг и курсов в Princeton University

Язык Tiger
● Учебный язык программирования
● Разработан Andrew Appel для книг и курсов в Princeton University

let
 var a : int := 0
in
 for i := 0 to 100 do (
 a := a + 1;
 ()
)
end

Типы данных в Tiger
Типы данных:

1. Строки — string
2. Целые числа — int
3. Структуры и массивы

Типы данных в Tiger
Типы данных:

1. Строки — string
2. Целые числа — int
3. Структуры и массивы

Особенности:

1. Выражения и функции могут ничего не возвращать
2. Нет приведений типов — как явных, так и неявных

Типы данных в интерпретаторе Tiger

Цель
Реализовать интерпретатор Tiger

● с поддержкой int и string
● без поддержки массивов и структур

Класс Value

Сопоставление по шаблону в C#
public string AsString() {

 return _value switch {

 string s => s,

 _ => throw new InvalidOperationException($"Value
{_value} is not a string"),

 };

}

Сопоставление по шаблону в C#
public ValueType GetValueType() {

 return _value switch {

 string => ValueType.String,

 int => ValueType.Int,

 Void => ValueType.Void,

 _ => throw new InvalidOperationException($"Unexpected
value {_value} of type {_value.GetType()}"),

 };

}

Сложность вычислений при динамической типизации
В языке Tiger:

1. Операторы +, -, *, /, &, | работают с числами
2. Операторы <, >, <=, >= работают с числами и строками
3. Операторы =, <> работают с числами, строками и ссылочными

типами

Проблемы:

1. Бинарные операции — двойная диспетчеризация по типам
2. Много проверок на типы

Решение №1: разделить проверки и вычисления
Сделаем две реализации IAstVisitor:

1. AstTypeChecker — проверяет соответствие типов

○ не вычисляет результаты

○ относится к семантическим проверкам

2. AstEvaluator — выполняет интерпретацию по AST

○ предполагает, что типы уже проверены

Решение №2: ситуативный рефакторинг
public void Visit(BinaryOperationExpression e) {

 e.Left.Accept(this);

 e.Right.Accept(this);

 Value right = _values.Pop(), left = _values.Pop();

 _values.Push(EvaluationUtil.ApplyBinaryOperation(

 e.Operation, left, right

));

}

Решение №2: ситуативный рефакторинг
public void Visit(BinaryOperationExpression e) {

 e.Left.Accept(this);

 e.Right.Accept(this);

 Value right = _values.Pop(), left = _values.Pop();

 _values.Push(EvaluationUtil.ApplyBinaryOperation(

 e.Operation, left, right

));

}

switch-case внутри
вызываемого метода

Числовые типы данных
в C++, C#, Go

Проблема №1 — размеры типов
Типы целых чисел со знаком

Тип Размер в C++ Размер в C# Размер в Go

short 2 ≤ short 2 —

Проблема №1 — размеры типов
Типы целых чисел со знаком

Тип Размер в C++ Размер в C# Размер в Go

short 2 ≤ short 2 —

int 2 ≤ int
short ≤ int

4 4 на 32-битных,
8 на 64-битных

Проблема №1 — размеры типов
Типы целых чисел со знаком

Тип Размер в C++ Размер в C# Размер в Go

short 2 ≤ short 2 —

int 2 ≤ int
short ≤ int

4 4 на 32-битных,
8 на 64-битных

long 4 ≤ long
int ≤ long
long = ptr size(*)

* кроме Windows

8 —

Проблема №1 — размеры типов
Типы чисел с плавающей точкой (IEEE 754)

Тип Размер (байт) Экспонента (бит) Мантисса (бит)

float
IEEE 754 binary32

4 8 23

double
IEEE 754 binary64

8 (*)

* иногда 4
в embedded

11 52

Проблема №2: потери при преобразовании типа
Преобразование меняет диапазон значений:

1. Narrow cast — преобразование из более широкого диапазона в
более узкий

2. Wide cast — преобразование из более узкого диапазона в более
широкий

Narrow cast — это риск потери данных.

Какие преобразования являются narrow cast?

int
(32 бит)

long
(64 бит)

float
(32 бит)

double
(64 бит)

№1

№2

№3

№4
№5

№6

Запреты неявных преобразований типов

Преобразование С++ C# Go

narrow cast разрешён
(warning)

запрещён запрещён

wide cast разрешён разрешён запрещён

Проблема №3: двоичные и десятичные дроби
Есть десятичная дробь:

1 / 5 = 0.2
В двоичном виде это:

0.210 = 0.001100110011…2 = 0.(0011)2

Проблема: 0.2 нельзя представить точно числом с плавающей точкой.

Выводы
1. Платформы имеют отличия

○ 16, 32, 64-разрядные

○ Linux и Windows

○ Разные архитектуры: Intel/AMD, ARM, RISK-V, …

2. Неявные преобразования — источник проблем

○ Narrow cast = потеря данных

○ Wide cast = ошибка выбора типа

Числовые типы данных
в JavaScript, PHP, Python

Скриптовые языки
1. Предназначены для интерпретации
2. Имеют динамическую типизацию
3. Чем меньше базовых данных — тем лучше

Скриптовые языки
1. Предназначены для интерпретации
2. Имеют динамическую типизацию
3. Чем меньше базовых данных — тем лучше

Каждый новый тип — это:

1. N правил взаимодействия со старыми типами
2. Дилемма: неявные преобразования или ошибки в runtime

Числа в JavaScript
Два типа данных: Number и BigInt

Числа в JavaScript
Два типа данных: Number и BigInt

Number — это два способа представления внутри V8

Тип данных в V8 Нижележащий тип
(32-битные системы)

Нижележащий тип
(64-битные системы)

Small Integer int (31 бит) int (32 бита)

Heap Number double double

Числа в PHP
Два типа данных: int и float

Числа в PHP
Два типа данных: int и float

1. Размер int:
○ 32 бита на 32-битных платформах
○ 64 бита на 64-битных платформах

2. Размер float: 64 бита
3. Автоматическое преобразование

○ int / int → float
○ int + float → float
○ … и так далее

1. Типы указываются
○ для функций — параметры, возвращаемое значение
○ для классов — типы полей и констант

2. Проверяются интерпретатором PHP
3. Два режима:

○ нестрогий
○ строгий (strict_types=1)

Type hints в PHP

Type hints в PHP

declare(strict_types=1);

function sphereVolume(float $radius): float {

 return (4/3) * M_PI * $radius ** 3;

}

$volume = sphereVolume(5.0);

$volume = sphereVolume(5);

Type hints в PHP

declare(strict_types=1);

function sphereVolume(float $radius): float {

 return (4/3) * M_PI * $radius ** 3;

}

$volume = sphereVolume(5.0);

$volume = sphereVolume(5); Вопрос: что произойдёт
при передаче int?

1. Типы указываются
○ для функций — параметры, возвращаемое значение
○ для классов — типы полей класса

2. Не проверяются интерпретатором
○ предназначены для инструментов (линтеры и т.д.)
○ добавляют читаемость

Type hints в Python

import math

def sphere_volume(radius: float) -> float:

 return (4/3) * math.pi * radius ** 3

volume = sphere_volume(5.0)

volume = sphere_volume("5.0")

Type hints в Python

import math

def sphere_volume(radius: float) -> float:

 return (4/3) * math.pi * radius ** 3

volume = sphere_volume(5.0)

volume = sphere_volume("5.0")

Type hints в Python

Вопрос: что произойдёт
при передаче str?

Выводы
В скриптовых языках — свои проблемы

1. Чем меньше типов, тем лучше
2. Сложно выбрать даже тип для чисел

○ Дилемма: один Number или два Int + Float?
○ Какие правила преобразования?

Вывод типов
(type inference)

Вывод типов в Go

● Для функции типы указываются всегда

● Для переменных — доступен вывод типа (type inference)

Вывод типов в Go

● Для функции типы указываются всегда

● Для переменных — доступен вывод типа (type inference)

func sphereVolume(radius float64) float64 {

 cube := radius * radius * radius

 volume := (4.0 / 3.0) * math.Pi * cube

 return volume

}

Вывод типов в С++23

● Вывод типов доступен везде

● Последствия — рост времени компиляции

auto sphereVolume(auto radius) {

 auto cube = radius * radius * radius;

 auto volume = (4.0 / 3.0) * M_PI * cube;

 return volume;

}

Выводы
Дилемма: где вывод типов, а где обязательное объявление?

Решения:

● вывод типов внутри функции → простая реализация
● глобальный вывод типов → сложная реализация, сложно

оптимизировать

Строковый тип данных

Минимум для работы со строками

1. Конкатенация строк
2. Декомпозиция строки

○ Получение размера
○ Получение подстроки
○ Обход строки по символам

Минимум для работы со строками

1. Конкатенация строк
2. Декомпозиция строки

○ Получение размера
○ Получение подстроки
○ Обход строки по символам

Вопрос: какой пункт из
трёх можно убрать?

Конкатенация строк

Язык Способ конкатенации

Python "Hello, " + "World!"

JavaScript "Hello, " + "World!"

PHP "Hello, " . "World!"

Tiger (учебный) concat("Hello, ", "World!")

Получение подстроки

Язык Получение подстроки

Python str[i:i+n]

JavaScript str.substring(from, from + count)

PHP substr(str, from, count)

Tiger (учебный) substring(str, from, count)

Булев тип данных

Короткая схема вычислений (Short-circuit evaluation)
Если левый операнд определяет результат выражения, то правый
операнд не вычисляется.

Короткая схема вычислений (Short-circuit evaluation)
Если левый операнд определяет результат выражения, то правый
операнд не вычисляется.

Примеры:

1. true && foo() — функция foo будет вызвана
2. false && foo() — функция foo не будет вызвана
3. true || foo() — ???
4. false || foo() — ???

Преобразование bool в строку

Язык Способ Результат

С++ std::format("{}", v) "true" / "false"

std::count << v "0" / "1" или
"true" / "false"

C# v.ToString() "True" / "False"

Go strconv.FormatBool(v) "true" / "false"

PHP (string)v "1" / ""

Подытожим

Выводы для аналитика
1. Чем меньше типов — тем проще
2. Чем меньше преобразований типов — тем проще
3. Для каждого типа есть минимальные ожидания
4. Автоматический вывод типов — только в пределах функции

Выводы для разработчика
1. Лучше разделить проверку типов и вычисления
2. Пишите по TDD
3. Соблюдайте минимализм
4. Используйте ситуативный рефакторинг

Спасибо за внимание!
Вопросы?

