
Атрибутные грамматики
Лекция №11

Цель
Обрабатывать все правила семантики до начала выполнения кода.

Цель
Обрабатывать все правила семантики до начала выполнения кода.

Дополнительная цель: исправить неточности прошлых лекций

1. Таблица символов и таблица переменных
2. Обработка областей видимости

Интерпретатор языка Tiger
https://sourcecraft.dev/sshambir-public/pstiger

https://sourcecraft.dev/sshambir-public/pstiger

Атрибутные грамматики

Формализация правил семантики
Правила грамматики:

E → T E → E + T E → E - T

Формализация правил семантики
Правила грамматики:

E → T E → E + T E → E - T

Правило семантики:

type(left + right) =

if type(left) == int && type(right) == int

then int

else error

Вычисление атрибута “type”

x -

+

y 10

Вычисление атрибута “type”

x -

+

y 10

int

Вычисление атрибута “type”

x -

+

y 10

int

string

Вычисление атрибута “type”

x -

+

y 10

int

string int

Вычисление атрибута “type”

x -

+

y 10

int

string int

error

Вычисление атрибута “type”

x -

+

y 10

int

string int

error

error

1. Синтезируемые — от терминалов к начальному символу
2. Наследуемые — от начального символа к терминалам

Наследуемые:
● scope

Виды атрибутов

x -

+

y 10

Синтезируемые:
● type
● value

Атрибуты в AST

Атрибуты в AST

Синтаксический анализ
(рекурсивный спуск)

Семантический анализ
(обходы AST)

Лексический анализ

Атрибуты в AST

Синтаксический анализ
(рекурсивный спуск)

Семантический анализ
(обходы AST)

Лексический анализрегулярная
грамматика поток токенов

Атрибуты в AST

Синтаксический анализ
(рекурсивный спуск)КС-грамматика AST

Семантический анализ
(обходы AST)

Лексический анализрегулярная
грамматика поток токенов

Атрибуты в AST

Синтаксический анализ
(рекурсивный спуск)КС-грамматика AST

Annotated ASTатрибутная
грамматика

Семантический анализ
(обходы AST)

Лексический анализрегулярная
грамматика поток токенов

Способы хранения атрибута
1. Поля в узлах в дерева

○ class Expression { Type type; }

2. Отдельная таблица

○ Dictionary<Expression, Type> types;

3. Локальные переменные в посетителе

○ class AstEvaluator { Stack<Value> _values; }

Класс AstAttribute<T>
1. Set() можно вызвать один раз
2. после Set() можно вызывать Get()

public struct AstAttribute<T> {

 private T _value;

 private bool _initialized;

 public T Get() { ... }

 public void Set(T value) { ... }

}

Класс ReferenceEqualityComparer<T>
Позволяет использовать тип T как ключ в словаре.

public class ReferenceEqualityComparer<T> : IEqualityComparer<T> {

 public bool Equals(T? x, T? y) {

 return ReferenceEquals(x, y);

 }

 public int GetHashCode(T obj) {

 return RuntimeHelpers.GetHashCode(obj);

 }

}

Проверка семантики

Обработка в несколько проходов

Обработка в несколько проходов
_passes = [

 new ResolveNamesPass(globalSymbols),

 new CheckContextSensitiveRulesPass(),

 new ResolveTypesPass(),

];

public void Check(Expression program) {

 foreach (AbstractPass pass in _passes) {

 program.Accept(pass);

 }

}

Таблица символов

Класс таблицы символов

Области видимости

Динамическая область видимости
let
 function f() = print(x)
 function g() =
 let
 var x := 10
 in
 f()
 end
in
 g()
end

Динамическая область видимости
let
 function f() = print(x)
 function g() =
 let
 var x := 10
 in
 f()
 end
in
 g()
end

Динамическая область видимости
let
 function f() = print(x)
 function g() =
 let
 var x := 10
 in
 f()
 end
in
 g()
end

x = 10

Набор переменных зависит от

порядка вызова функций

Лексическая область видимости
let
 function f() = print(x)
 function g() =
 let
 var x := 10
 in
 f()
 end
in
 g()
end

Лексическая область видимости
let
 function f() = print(x)
 function g() =
 let
 var x := 10
 in
 f()
 end
in
 g()
end

Область видимости функции

Внешняя область видимости

Лексическая область видимости
let
 function f() = print(x)
 function g() =
 let
 var x := 10
 in
 f()
 end
in
 g()
end

Область видимости функции

Внешняя область видимости

No variable with name "x"

Лексическая область видимости
let
 function f() = print(x)
 function g() =
 let
 var x := 10
 in
 f()
 end
in
 g()
end

Область видимости функции

Внешняя область видимости

No variable with name "x"

Набор переменных зависит от

расположения функции в коде

Вычисление атрибута “scope”

FuncDecl FuncDecl

ScopeExpr
g()f()

VarDecl

ScopeExpr

FuncCall

Интерпретация по AST

Таблица переменных

Замыкание (Closure)
Замыкание — функция, которая «захватывает» переменные внешней
лексической области видимости.

Замыкание (Closure)
Замыкание — функция, которая «захватывает» переменные внешней
лексической области видимости.

let
 var counter: int := 0
 function inc() = counter := counter + 1
 function display() = printi(counter)
in
 inc();
 display()
end

Замыкание (Closure)
Замыкание — функция, которая «захватывает» переменные внешней
лексической области видимости.

let
 var counter: int := 0
 function inc() = counter := counter + 1
 function display() = printi(counter)
in
 inc();
 display()
end

Шаг 1. Захват VariablesTable

Шаг 2. Создание VariablesTable, дочернего от

захваченного

Замена таблицы переменных при вызове
private void InvokeFunction(FuncCallExpr e, FuncDecl fn) {

 VariablesTable captured = _context.GetCapturedVariables(fn);

 VariablesTable oldVariables = _variables;

 _variables = new VariablesTable(parent: captured);

 // ...вычисляем аргументы, записываем в таблицу переменных.

 // ...вызываем функцию и сохраняем результат в стеке.

 // ...восстанавливаем старую таблицу переменных

}

Поддержка рекурсии

AST для функций

AST для функций

Пользовательские функции

Встроенные функции

Рекурсия
let
 function factorial(x: int): int =
 if x <= 1
 then 1
 else x * factorial(x - 1)
in
 printi(factorial(5))
end

Рекурсия
let
 function factorial(x: int): int =
 if x <= 1
 then 1
 else x * factorial(x - 1)
in
 printi(factorial(5))
end

Специализированный обход AST:

1. Добавить функцию в SymbolsTable

2. Обойти параметры и тело функции

Взаимная рекурсия
let
 function f(n: int) = g(n + 1)
 function g(n: int) = (
 printi(n);
 if n < 10 then
 f(n + 1)
)
in
 f(1)
end

Взаимная рекурсия
let
 function f(n: int) = g(n + 1)
 function g(n: int) = (
 printi(n);
 if n < 10 then
 f(n + 1)
)
in
 f(1)
end

Специализированный обход AST:

1. Добавить непрерывный ряд функций в

SymbolsTable

2. Обойти параметры и тело каждой

функции

Подытожим

Аналитикам на подумать
Для функций:

1. Области видимости — лексические или динамические?
2. Есть ли рекурсия?
3. Есть ли взаимная рекурсия?
4. Есть ли замыкания (вложенные функции)?

Интерпретатор языка Tiger
https://sourcecraft.dev/sshambir-public/pstiger

https://sourcecraft.dev/sshambir-public/pstiger

Модули проекта PsTiger

Тесты проекта PsTiger

Спасибо за внимание!
Вопросы?

